Centers for Learning & Teaching: Renewing Leadership Capacity

Richard A. Duschl King's College London

PI - Center for Informal Learning and Schools (CILS); Partners w/The Exploratorium (Rob Semper); UC-Santa Cruz (Joyce Justice, Lynda Goff)

The Word on the Street, or The Story as I Know It

- ****Congressional interest to explain the economic boom of the 80's**
 - △Alan Greenspan investment during the 1960s and 1970s by NSF in human capital
- #NSF Program Officers wondering now that we are beginning to get a scientific understanding of teaching and learning, who will carry us forward in the next generation?

Existing CLTs

- □ Technology Texas A&M;
- Middle School Maths Delaware, Maryland, Penn State

Round 2 -

- Informal Learning & Schools; King's, Santa Cruz, Exploratorium
- Assessment Far West Lab, UCLA, Stanford, UC-Berkeley
- Diversity in Math Education Wisconsin, Berkeley,
- □ Distance Learning Montana St., Portland St.& Others
- Rural Math Education Tennessee, Ohio, Kentucky

Existing CTLs cont.

Round 3 −

- Materials Development in Science Michigan, Michigan St., Northwestern, AAAS;
- □ Inquiry & Teacher Preparation Washington University, St. Louis Science Center, Missouri Botanical Gardens

Round 4 -

- □ Technology Berkeley, Concord & Others
- K-12 Math Curriculum Development Missouri & Others

CLT Partnership Challenges

#Within

- Leadership
- Recruitment
- Communication
- Research Agenda
- Research Partners
 - ∠ London Zoo, Science Museum, Natural History Museum

#Between

- Research Partnerships with other CTLs (annual meetings)
- □ Research
 □ Partnerships with
 other NSF initiatives;
 e.g., MSPs, Germany,
 etc.
- Cultures of Inquiry

CILS Goals

X Leadership Development Goals

- △ 24-30 Ph.D. Students
- △ 12 Post docs
 - **∠**UCSC/Science Fellows
 - **区**Exp/Museum Fellows
- △ 100+ Masters Students
- Place CILS participants in university posts and in "science center" posts.

Research Goals

- Establish a research agenda on science learning and teaching that bridges two worlds
- ☐ Further our understanding of how to mediate learning
- Seek to inform cognitive and social psychological models of learning
- ☑ Id. factors/practices that improve T & L

The Learning Sciences

- ## Bransford, J., Brown, A. & Cocking, R. (Eds.). (1999).

 How People Learn: Brain, mind, experience and school.

 Washington, DC: National Academy Press.
- # Pellegrino, J., Chudowsky, N. & Glaser, R. (Eds.). (2001). Knowing what student know: The science and design of educational assessment. Washington, DC: National Academy Press.
- ** NRC. (2000). *Inquiry and the National Science Education Standards*. Washington, DC: National Academy Press.

#http://www.nap.edu

Learning How to Learn

- #Advances in communication technology and in our understanding of:
 - Reasoning and scientific reasoning
 - The structure of knowledge and scientific knowledge
 - The processes associated with knowledge growth and development
- ****New Ways of 'Seeing' Classrooms**

3 Ps

#Psychology - Learning

Cognitive Science, Information-processing, social psychology, activity theory

#Philosophy - Knowledge

Epistemology; Science Studies; Models, Argumentation; (ETHICS)

#Pedagogy - Teaching

Inquiry Learning; Problem-based Learning; Community of Learners; Model-based Learning; Design Principles

Cognitive & Social Psychology

X Structured Knowledge

Instruction should develop conceptual structures to support inference & reasoning

Prior Knowledge

Learner intuition is a source of cognitive ability that supports & promotes new learning

Metacognition

Reflecting on learning, meaning making & reasoning strategies provide learners a sense of agency.

Procedural Knowledge in Meaningful Contexts

Learning information should be connected with its use

Cog. & Soc. Psych. (cont.)

X Social participation and cognition

Social display of cognitive competence via group dialog helps individuals acquire knowledge and skill.

Holistic Situation for Learning:

Competence is best developed through cognitive apprenticeship within larger task contexts.

Make Thinking Overt

 □ Design situations in which the thinking of the learner is made apparent and overt to the teacher and to students. (from, Glaser, 1994)

Nanotechnology Engineering & Education

#Intuitions on Success:

- Will emerge from design-based learning programs science & maths in context
- ✓Will emerge from mathematics more than from science -abstractions of space & time
- ✓Will emerge from an emphasis on how we came to know and why we believe and NOT on what we know - i.e., The Learning Trajectory.